skip to main content


Search for: All records

Creators/Authors contains: "Lubiw, Anna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Given a locally flat-foldable origami crease pattern $G=(V,E)$ (a straight-line drawing of a planar graph on the plane) with a mountain-valley (MV) assignment $\mu:E\to\{-1,1\}$ indicating which creases in $E$ bend convexly (mountain) or concavely (valley), we may \emph{flip} a face $F$ of $G$ to create a new MV assignment $\mu_F$ which equals $\mu$ except for all creases $e$ bordering $F$, where we have $\mu_F(e)=-\mu(e)$. In this paper we explore the configuration space of face flips that preserve local flat-foldability of the MV assignment for a variety of crease patterns $G$ that are tilings of the plane. We prove examples where $\mu_F$ results in a MV assignment that is either never, sometimes, or always locally flat-foldable, for various choices of $F$. We also consider the problem of finding, given two locally flat-foldable MV assignments $\mu_1$ and $\mu_2$ of a given crease pattern $G$, a minimal sequence of face flips to turn $\mu_1$ into $\mu_2$. We find polynomial-time algorithms for this in the cases where $G$ is either a square grid or the Miura-ori, and show that this problem is NP-complete in the case where $G$ is the triangle lattice. 
    more » « less
  2. A Stick graph is an intersection graph of axis-aligned segments such that the left end-points of the horizontal segments and the bottom end-points of the vertical segments lie on a “ground line,” a line with slope −1. It is an open question to decide in polynomial time whether a given bipartite graph G with bipartition A∪B has a Stick representation where the vertices in A and B correspond to horizontal and vertical segments, respectively. We prove that G has a Stick representation if and only if there are orderings of A and B such that G’s bipartite adjacency matrix with rows A and columns B excludes three small ‘forbidden’ submatrices. This is similar to characterizations for other classes of bipartite intersection graphs. We present an algorithm to test whether given orderings of A and B permit a Stick representation respecting those orderings, and to find such a representation if it exists. The algorithm runs in time linear in the size of the adjacency matrix. For the case when only the ordering of A is given, we present an O(|AB}^3)-time algorithm. 
    more » « less