- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Lubiw, Anna (3)
-
Eppstein, David (2)
-
Kobourov, Stephen (2)
-
Mondal, Debajyoti (2)
-
Akitaya, Hugo A (1)
-
De Luca, Felice (1)
-
Dujmović, Vida (1)
-
Hossain, Iqbal (1)
-
Hull, Thomas C (1)
-
Jain, Kshitij (1)
-
Kindermann, Philipp (1)
-
Liotta, Giuseppe (1)
-
Maignan, Aude (1)
-
Vosoughpour, Hamideh (1)
-
Whitesides, Sue (1)
-
Wismath, Stephen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Given a locally flat-foldable origami crease pattern $G=(V,E)$ (a straight-line drawing of a planar graph on the plane) with a mountain-valley (MV) assignment $$\mu:E\to\{-1,1\}$$ indicating which creases in $$E$$ bend convexly (mountain) or concavely (valley), we may \emph{flip} a face $$F$$ of $$G$$ to create a new MV assignment $$\mu_F$$ which equals $$\mu$$ except for all creases $$e$$ bordering $$F$$, where we have $$\mu_F(e)=-\mu(e)$$. In this paper we explore the configuration space of face flips that preserve local flat-foldability of the MV assignment for a variety of crease patterns $$G$$ that are tilings of the plane. We prove examples where $$\mu_F$$ results in a MV assignment that is either never, sometimes, or always locally flat-foldable, for various choices of $$F$$. We also consider the problem of finding, given two locally flat-foldable MV assignments $$\mu_1$$ and $$\mu_2$$ of a given crease pattern $$G$$, a minimal sequence of face flips to turn $$\mu_1$$ into $$\mu_2$$. We find polynomial-time algorithms for this in the cases where $$G$$ is either a square grid or the Miura-ori, and show that this problem is NP-complete in the case where $$G$$ is the triangle lattice.more » « less
-
De Luca, Felice; Hossain, Iqbal; Kobourov, Stephen; Lubiw, Anna; Mondal, Debajyoti (, 26th Symposium on Graph Drawing (GD))A Stick graph is an intersection graph of axis-aligned segments such that the left end-points of the horizontal segments and the bottom end-points of the vertical segments lie on a “ground line,” a line with slope −1. It is an open question to decide in polynomial time whether a given bipartite graph G with bipartition A∪B has a Stick representation where the vertices in A and B correspond to horizontal and vertical segments, respectively. We prove that G has a Stick representation if and only if there are orderings of A and B such that G’s bipartite adjacency matrix with rows A and columns B excludes three small ‘forbidden’ submatrices. This is similar to characterizations for other classes of bipartite intersection graphs. We present an algorithm to test whether given orderings of A and B permit a Stick representation respecting those orderings, and to find such a representation if it exists. The algorithm runs in time linear in the size of the adjacency matrix. For the case when only the ordering of A is given, we present an O(|AB}^3)-time algorithm.more » « less
-
Eppstein, David; Kindermann, Philipp; Kobourov, Stephen; Liotta, Giuseppe; Lubiw, Anna; Maignan, Aude; Mondal, Debajyoti; Vosoughpour, Hamideh; Whitesides, Sue; Wismath, Stephen (, Algorithmica)
An official website of the United States government

Full Text Available